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At least one of m objects evades n pursuers in Euclidean k-space. All the objects are of the same type, 

and their motion is governed by linear dynamics. When considering this problem an auxiliary problem 

arises: evasion from fixed positions in a semi-infinite time interval. 

The problem of evasion from given initial positions has previously been studied over a finite 
time interval [l]. The research reported here is closely related to that of [2-6]. 

1. Let Rk be Euclidean k-space, (x, y) the scalar product of vectors x and y of Rk, and 
IlxlL~(x, x). We let int X, ax, COX, con X denote the interior, boundary, convex hull and 
conical hull, respectively, of an arbitrary set Xc Rk; Q(Rk)(co S2(Rk)) is the space of all non- 
empty compact sets (convex compact sets) in Rk with the following Hausdorff metric 
S=(xxR’(: Ilxll~l); N,=(l,2,..., q]. If X is a finite set, we let IXI denote the number of its 
elements. 

Given a set F E L2(Rk), we define the support function c(F, .) : Rk + R by 

Let w. E Rk, llyo Ilf 0. The set 

is called the support set of Fin the direction w,,. If the support set U(F, ye,,) is a singleton, we 
say that F is strictly convex towards wO E Rk. We shall say that a set FE Q(R’) is strictly 
compact if it is strictly compact towards any wO E Rk, II y. II+ 0 [7]. A set FE ii? is said to be 
compact with smooth boundary if 

U(F,W)~U(F,W’)=~, VW,V’EiK WV 

Note that a compact set with smooth boundary, like a strictly convex compact set, need not 
be a convex set. For example, the unit sphere aS in Rk is a strictly compact set with smooth 
boundary. 

Consider a controllable object whose motion is described by a linear differential equation 

j=Ay+u, REV, VEQ(R’) (1-l) 
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where y is the k-dimensional phase state vector of the object, 2) is a k-dimensional control 
vector, and A is a square matrix of order k. By an admissible control over an interval Z = [0, tl] 
we mean any measurable function 2): Z + V. 

Let X(t,; G, V) denote the set of admissibility for the controllable object (1.1) at time t, > 0 
from the initial set G E sz(R’), i.e. 

x(t,;G,V) = exp(t,A)G+]expW, - s)AW 
0 

Let y(t) be a solution of Eq. (1.1) corresponding to the control U(Z) and initial condition 
y(0) E G, G E @R’). We shall say [8] that the pair (u(t), y(r)) satisfies a maximum condition 
over the interval Z and a transversality condition on the set G if a solution v(t) exists of the 
auxiliary adjoint system of equations 

+ = -A’yj (1.2) 

with initial condition ~(0) E &S such that the following conditions hold 

1. (u(t), w(t)) = c(V, w(t)) for almost all t E I, 

2. MO), w(O)) = c(G, w(O)). 

Lemma 1. Let G E coQRk). Then y(tl) is an element of the set 3X@,; G, V) for I, > 0 if and 
only if the pair (v(t), y(t)) satisfies a maximum condition over Z and a transversality condition 
onG. 

Lemma 2 [4]. Let y,(t) be a solution of Eq. (1.1) corresponding to a control u,(t) and an 
initial condition yi(0)eG, G EQ(R~), where the pair (uj(t>, yj(t)) satisfies a maximum condi- 
tion over the interval Z = [0, tl], t, > 0, and a transversahty condition on G E S2(Rk); vi(t) is the 
corresponding solution of the adjoint system (1.2), j = 1, 2. If y,(O) f y,(O) and for at least one 
j E N2 and almost all t E I, the function c (V, w) is differentiable at the point vi(t). Then 
Y1(4) f Y&l). 

Lemma 3 [5,6]. If V is a compact set with smooth boundary, G E coln(R’), then the set X(t,; 
G, V) where c, > 0, is a convex compact set with smooth boundary. 

2 The motion of objects in Rk (k > 2) is described by equations 

q:~i=Axi+Ui,UiEUi; Ej:~j=AYj+~j. Kiev (2.1) 

lJi,VeCl(Rk), U~CCOV; i=l,..., n, j=l,..., m 

with initial conditions x,(O) = $‘, y,(O) = yy, where 

x~*$, i=l,..., n, j=i ,..., m (2.2) 

Here x,, yj are the phase coordinates of the ith pursuer and the jth evader and A is a square 
matrix of order k. The players’ controls are measurable functions U, :[O, +-) + U,, uj :[0, 
+-) + v. 

We shall say that evasion is possible in game (2.1) starting in the initial state z” = (x,“, . . . , XII, 

0 
Yl, * - * , y:) (the local evasion problem is solvable) if the players Ej (j= 1, . . . , m) have 
controls such that, for any controls of players c (i = 1, . . . , n), s E (1, . . . , m} exists such that 
x,(t) f y,(t) for all i E N,,, t E [0, +-J). Moreover, at time t the values of the evaders’ controls are 
constructed on the basis of information on the state actually achieved 

z(t)=(x,(t),..., x,(t), r,(t)..*** v,(t)) 

and the values of the pursuers’ controls on the basis of any conceivable information. 
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If evasion is possible in game (2.1) from any initial state z” that satisfies inequalities (2.2), we 
shall say that the global evasion problem is solvable in game (2.1). 

3. Let G be some non-empty subset of R’. Given an initial state z” =(x(O), y(0)) = (CC,“, . . . , 

& $9 . . . . y:), we define several sets of indices 

Z(x(O),G)= (i E (l,...,n):$ E G} (3.1) 

J(y(O),G)= (j E (l,...,m):y; E G) (3.2) 

Jo(y(O),ilG) = (j c {l,...,nt):y~ ERG} (3.3) 

where, if there exist 

j, E J,(y(O),i3G), 1= l,...,w> 1, il <h <-.<js (3.4) 

such that yyl = yiz = . . . = y$ we shall assume that j, e I,(y(O), aG), 1= 2, . . . , s. 
Let G E coQ(R’). Define a mapping P(G, ) : Rk \ intG + iI by the formula 

P(G,y)=asn[con(y-G)]‘, YE R” \ intG (3.5) 

where [con(y - G)J* is the cone adjoint to con(y -G). Let wj(t, I;) denote a solution of system 
(1.2) corresponding to the initial condition ~~(0) = 5, 5 E P(G, yy), j E J,(y(O), 8G). 

Theorem 1. If a set G E coQ(R’) exists such that IJo(y(0), aG) I > I Z@(O), Rk \G) I, and for 
any j E Jo@(O), X) and some 5 E q(G, y;) the support function c(V, I& is differentiable at the 
point wj(t, 5) for almost all t E [0, +=), then evasion is possible in game (2.1) from the initial 
state z”. 

Proof. For any j E Jo(y(0), iJG), choose a vector 5 E P(G, yf) such that, for almost all t E [0, 
+=), the support function c(V, v) is differentiable at wj(r, 5). 

As a control for player Ej(j E J,(y(O), aG)) we take a measurable function uj(r) E V, t 2 0 
such that 

(3.6) 

The control vi(r), Jo J,(y(O), aG) is uniquely defined by (3.6), because c(V, w) is 
differentiable at wj(r, 5) for almost all t 5 0. The uniqueness of the control uj(r) is understood 
here in the sense that two measurable functions defined in one time interval are equal if their 
values are the same at almost every point of the interval. The controls of the evaders 
Ej(j E N,,, \ J&(O), i_lG)) are arbitrary. 

If follows from Lemmas 1 and 2 that a pursuer c(i E Z(n(O), G)) cannot capture any evader 
E,(jcz J,(y(O), aG)), while a pursuer c(i E Z(.x(O), Rk \G)) may capture at most one evader 
Ej( j E Jo(y(0), aG)) in a semi-infinite time interval. Since I J,(y(O), 3G) I>1 Z@(O), Rk \ G) I, this 
proves the theorem. 

Note that differentiability of the support function c(V, w) at a point w. E Rk, II \~r, II+ 0 implies 
that V is strictly convex toward wo, and conversely. 

Corollary 1. Suppose that in game (2.1) V is a strictly convex compact set and there exists 
j E N,,, such that yf e intco($, . . . , xi). Then the evasion problem is solvable from the initial 
state z”. 

This corollary generalizes a result of [9, lo], hitherto known to be true for simple motion, to 
linear systems. 
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Corollary 2. Suppose that in game (2.1) V is a strictly convex compact set, II = k + 1 and 
m = 2. Then the global evasion problem is solvable. 

Proof. We may assume without loss of generality that y,” + y,“. Let H denote a hype~lane passing 
through the points xp, i = 1, . . . , k- 2, yj, y,“. If there are several such hyperplanes, choose one. Clearly, 
one of the open half-spaces determined by H contains either none of the points xi,.,, xi, x:+~ or only one 
of them. Consequently, a convex compact set G exists such that yf, yi E aG and I Z(x(O), R* \ G) I s 1. 

It follows from this assertion, in particular, that the global evasion problem for a game of 
three pursuers and two evaders is solvable in the plane for simple motion [3f. 

CoroZZary 3. Suppose that in game (2.1) V is a strictly convex compact set, IZ = 2k- 1 and 
m = k. Then the global evasion problem is solvable. 

Corollary 4. Suppose that in game (2.1) V is a strictly convex compact set, IZ = 2k and m= k, 
The initial state z0 = (xf, . . . , x&, y,“, . . . , yi) is such that yz fyi for any s, 4 EN,, s ie@ and 
the initial positions of some k + 1 players lie in one hyperplane. 

Then the evasion problem from the initial state z” is solvable. 

Theorem 2. Suppose that in game (2.1) V is a strictly convex compact set with smooth 
boundary. If sets G,, Gz E coQ(Rk) exist such that .$ E G, u G2 for any i E iV, and 

l&x(O), G, \ G~Y<~J(y(O), R” \(G, uG~))I+I~~(~(O),~G~~ 

then the evasion problem is solvable from the initial state z”. 

Proof. Since X(6; G,, V) is a convex compact set with smooth boundary for arbitrarily small 
6 >O, we may assume that G, has a smooth boundary. In that case the set P(G,, y,“) is a 
singleton for any j E ~o(y(0), dG,, contain~g the single point 5. Refine a control vi(t), c B 0, 
for any jE J,(y(O), aG,) by condition (3.6), letting w;(f, t;) be a solution of system (1.2) 
corresponding to the initial condition ~~(0) = rj. The controls of players Ej(j E N, \ [J(y(O), 
R” \ (G, u C;,)) u J,(y(O), aG,)]) are defined arbitrarily. 

The proof will proceed by induction on the number of evaders whose initial positions lie in 
the set Rk \(G, uG,). We put r=!J(u(O), R” \(G, UC,)) I. 

Consider the case I = 1. For any i E 1(x(O), 8G,), define a trajectory 52;.(t), t 3 0, which begins 
at a point $’ and corresponds to a control ii;(t) chosen from the equality 

where w,(t, 4) is a solution of system (1.2) with v,(O)= q, 5 E P(G,, xp). Since V is strictly 
convex and G, is compact with smooth boundary, it follows that the trajectories y,(r), 
j E f,(y(O), dG,), ?Zi(r), i E 1(x(O), aG,), t 3 0 are uniquely defined. 

The control uj(r), t E [0, t(Q), j E J(y(O), R” \ (G, UC,)) will be determined by condition 
(3~9, in which vi@, r.) is a solution of system (1.2) corresponding to the initial condition 
w,(O) = 5, 5 E P(G,, y,d), the vector 5 being chosen so that 

(3.7) 

Yj(t!~)r~)fy~(t(~)), VSEJ~(Y(O),~G~) (3.8) 

where yj(r, 5) is the corresponding trajectory of player Ej(j E J(y(O), Rk \(G, uG,))), t(q) and 
t(r;.) is the first time at which yj(t, t;) E X(t; G2, V). If y,(t, 5) e X(t; G,, V) for any t 3 0, then 
by Lemmas 1 and 2 player E,(jEJ(y(O), Rk \(G, uG,))), employing such a control, will evade 
capture. We may therefore assume that t(r) c +m. 

We shall now show that the vector ‘; E P(G,, yp), j E J(y(O), Rk \(G, uG,)), for which 
inequalities (3.7) and (3.8) hold, is unique. Indeed, since V is a compact set with smooth 
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boundary, it follows that 

Yj(t,{)fyj(f*rj2) for t>O 

if r;‘, 5’ E P(G,, y;), ri’ #‘;‘, 
Note that if it is true that, for some $ E P(G,, y,“), 1 E J(y(O), R’( \ (Gl uG,)) 

(3.9 

(3.10) 

for some s EI(x(O), aG,>, then for any other vector ‘;’ EP(G~, y,“), $ #);* (we are assuming 
that t(q*) < + -) we have 

Indeed, suppose the contrary 

(3.11) 

It follows from (3.9), (3.10) and (3.12) that r(r,‘) # t(r,‘). We may assume without loss of generality that 
r($) < r(q!). 

Since 

_Q(t(rjl))EilX(t(rj!); yJ0.V) 

Fs(t(rf))EdX(t(rj2); yl0.V) 

and (3.10) is true, it follows from Lemmas l-3 that F,(t(r,?))= y,(t($), #), contradicting (3.9) This proves 
(3.11). 

Thus, an evader Ej(j E J(y(O), Rk \(G, uG,))>, knowing the initial positions of players 
4(i E MO), aG2)), E&q E J,(y(O), aG,)>, will choose as ~~(0) a vector ‘; E P(G,, y,“) such that, 
on the trajectory y,(t, q), t 3 0, inequalities (3.7) and (3.8) hold at time t = t(q). 

Of course, whatever the controls of players c (i = 1, . . . , n) in the interval [0, t(q)], at time 
t =t(@, the state z(t(r,)) will satisfy the assumptions of Theorem 1. As the set G in the 
formulation of Theorem 1 one can take X(r(r;); G,; V). 

Suppose that the assumptions of the theorem hold and that when 1 s r evasion is possible 
from the initial state to in game (2.1). We shall show that the statement of the theorem is true 
for I = r + 1. Fix some set F E coS1(Rk) such that 0 E int F. We may assume that 

J(y(O), Rk \ (G, u G )I = N,,, 

y,o E~(G, +&,F), E, >O, s=l,..., r+l 

where E, > E, > . . . > E,+~ > E,+* = 0. Indeed, if q E {2, . . . , r+ 1) exists for which E,, = E , E, > E+~, 

then one can construct controls for the evaders E, (j= 1, . . . , r+ 1) in a half-closed &erval [0, 
6) (where a > 0 is an arbitrary small number) so that 

y,(6) E &X(&G,. V> + E, exp@W), \ds E N,+, \ Iq) 

Y, (6) E a<X<& G, . V) + Ei exp(ti)F), E~-~ > E; > E~+~ 

The control uj(t)(i E iV,+J is defined from condition (3.6) in which Gy,(r, 5) is a solution of 
system (1.2) corresponding to the initial condition wj(0)=q, 5 E P(G, +E~+~F, y,“), where ‘; is a 
vector satisfying (3.7) and (3.8). Let us assume that for any i E J’v’,+~ a first time t = t(r;.) c +- 
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exists at which yj(r, 5) E X(t; G,, V). 
Let t* = mini&,& t(r,). Appealing to the construction of the evaders’ controls, Lemmas 1 and 2 

and the induction hypothesis, we conclude that evasion is possible in game (2.1) from the 
initial state z(t*). This proves the theorem. 

Corollary 5. Suppose that in game (2.1) V is a strictly convex compact set with smooth 
boundary, n = 2k, m = k, the initial state to is such that yf ;t yi for any s, q E N,, s z q, and 
pairwise distinct indices i,, . . . , ik+l E N,, exist such that 

yy Eintco{xi ,..., xi+,}, j=l,..., k 

Then the evasion problem is solvable from the initial state z”. 

Proof. Let yp t intco(x,“, . . . , xi+J, j = 1, . . . , k. Consider the sets G, = co{xi+,, . . . , x&), G, = co(x~, 
. . . , xi+,). If j E N* exists for which yy E G,, then by Corollary 4 evasion is possible from the initial state 
r’.Butif y,“PG,(j=l,..., k), then all the assumptions of Theorem 2 are satisfied for the initial state to. 

Remark 1. Let x,(i=l, . . . . n, nak+2), y,(j=l,. . . ,m, msk) be given points in Rk, and suppose 
that for any pairwise distinct indices ii, . . . , i,, E N, an index j E N,,, exists such that 

Then 

.Vj E int CO Xi, ,..., Xik+, 
i I 

Xik+z d CO Xi, **..vxik+, 1 I 
for any pairwise distinct iI, . . . , i,,, E N,. 

Remark 2. If x,(i = 1, . . . , k+2), y,, yz are given points in Rk (k 2 3), then pairwise distinct indices 

Ill * . . 9 lk+l E N,+z exist such that 

Yj Q int co Xi, ‘“.‘Xit+, ( 1 9 j = 192 (3.13) 

Proof. Suppose the contrary: for any pairwise distinct indices i,, . . . , i,,, E N,,, j E N, exists such that 

Yj E int CO Xi, ‘...‘Xp+, 
1 I 

Without loss of generality, we may assume that 

y1 E int co{x, . . . ..xk+l} 

y2 Eintco{xl,..., x~+2}\co{X~.....x~+~} 

We represent the simplex B = co{xl, . . . , xk+J as the intersection of k+l closed half-spaces 77:. Since 

xk+* E B, there is at least one half-space g; that does not contain xkt2. Let 

,121 

If 1 > 1, we consider 1 k-dimensional simplexes, each of which is the convex hull of x~+~ and the (k-l)- 
difnensional principal face of the simplex B in the hyperplane H,, r E Nl. Here H, is the hyperplane 

bounding R,+. Clearly, the interiors of these I simplexes do not intersect one another and the interior of 
the set co{r,, . . . , xk,) must contain the initial positions of at least 1+ 1 evaders. 

Let I= 1. We may assume that ‘H, passes through the points x1, . . . , xk and x~+~ E p;. Consider the 
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k-dimensional simplexes 
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A, = co{x2 ,x3 . . . ..Xk.xk+lrxk+2 

A2 = co{x, 9x3 r-..Xk.Xk+I txk+2 

AI, =W{x,.x2 v-.-$-l *xk+l .xk+2 I 

We shall show that the interiors of any two of these simplexes are disjoint. For example, let us consider 

A, and 4 and find a hyperplane separating them. To do this, we consider the wne defined as the union 

of all rays emanating from the point x~+~ and passing through points of the set w{x~, . . . , xi}. The 

interior of this cone contains the point xi+,. Hence the hyperplane H through the points x30, x,“, . . . , xi+,, 
xR2 intersects the interior of the wne and, therefore, the points x,“, x2” lie on different sides of H. Clearly, 
H separates A, and 4. Thus the interior of co[x,“, . . . , x~+J contains the initial positions of at least k 
evaders. This is a contradiction. 

Thus, whatever the points x, (i = 1, . . . , k+2), y:, y,” in R* (ka3), there are always pairwise distinct 

indices i,, . . . , ik+, E N,,, such that condition (3.13) holds. 

4. Now, using the conditions established above for the local evasion problem to be solvable, 
let us consider the global evasion problem in some specific cases. 

Theorem 3. Suppose that in game (2.1) V is a strictly convex compact set with smooth 
boundary, n = k + 2 and m = 2. 

Then the evasion problem is solvable. 

Proof. Let 2’ =(x,“, . . . , x:+~, y,“, y,“) be some arbitrarily chosen initial state. We may assume 
without loss of generality that yf # yi. Let us assume that k = 2 and 

y3 Eintco(x~,...,x,O}, j=l,2 

If pairwise distinct indices exist 4, i,, i3 EN, such that 

yy 6zintco(x~,x~,X~), i=L2 

then by Corollary 5 the evasion problem is solvable. Hence, in particular, it follows that if the 
initial positions of any three players are collinear, evasion is possible from the initial state. This 
assertion also follows from Corollary 4. 

Suppose that for any pairwise distinct indices 4, 4, 4 E N4 ZEN, exists such that 
yp E intco(x~, x;, $). If 

yp E int co{yi,xi,xt}, il,i2 E N4 (4.1) 

then it is readily seen that 

yi E int co{yp,x~,x~), i3,i4 E Na \ {i,,i2} (4.2) 

Thus N, can be partitioned into two disjoint sets Z1 = (4, iJ, Z2 = {is, i,} for which (4.1) and 
(4.2) hold. 

At the initial time, choose two sets F,, F, ECOC~(Z?‘) such that 

x? xi+, EintFj, 1=2j-1, y;dFj, j=l,2 4 ’ (4.3) 

and vectors rj E P(l$ y,“)(j= 1, 2) exist for which 
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where y,(f, 5) is the trajectory of player E, corresponding to the control vi(t) chosen on the 
basis of (3.6), in which wi(t, I;) is a solution of system (1.2) corresponding to the initial 
condition ~~(0) = 5. Fix vectors 5 E P(4, y,“) satisfying inequality (4.4). 

Let t(rj) denote the first time at which y,(t, r;) E X(2; F,, V), I E N, \ (j}(j = 1, 2). If q E N, 
exists such that y,(t, r,) c X(t, F,, V), I E N, \ (q} for all t 2 0, then player E,, can evade capture. 
We will therefore assume that t(r,) c + -(j = 1, 2) we may assume without loss of generality that 
Gi) s t(5). 

Up to the first time t’~(0, t(4)) at which the three players are situated on a single straight 
line, the control u,(t)(j = 1, 2) is determined from (3.6). Such a time t’ exists, because 

Yj(r(~),rj)Eax<r<~); F29V)t j=L2 

.q, (f(q 1). xi4 NJ-, )) E int W(r, ); F2, V) 

for any controls y(r), ui,(t) in the interval [O, t(q)], and therefore 

y2(r(~),r~)~c0{Y,(r(~),~). xij(r(~))* xi4(r(~))] 

At a time t’, by Corollary 4, the evasion problem from the state z(t’) = (xl(t’), . . . , x&7, 
yl(t’), y,(r’)) is solvable. 

If k > 2, the solvability of the global evasion problem in game (2.1) with IZ = k + 2, m = 2 
follows from Remark 2. This completes the proof of the theorem. 

Theorem 4. Suppose that in game (2.1) V is a strictly convex compact set with smooth 
boundary, n = 2k and m = k. 

Then the global evasion problem is solvable. 
Proof. The assertion has already been proved for k = 2. Suppose now that k 3 3 and let 

z” =<x;, . . . , &, y,“, . . . , yi’ be an initial state. If pairwise distinct indices i,, . . . , ik+l EN,, 
exist such that 

yy Gintco(xi ,..., xt+l}, j=l,..., k (4.5) 

then by Corollary 5 the evasion problem is solvable. Let us assume that for any pairwise 
distinct indices i,, . . . , ik+l E Nz,, there is a j E N, such that 

It follows from Remark 1 that 

yy e int co 1 x~,...,x~+, 3 

for any pairwise distinct indices i,, . . . , ilr+2 E Nzk. Then for any 1 EN, 

O xk+l 4 co($ v..., xf+,_,] 
an index jl EN, exists such that 

ylq e int co ( xp,...,Xi+l I ( \ Co xf,....xi+,-~ I 

Since there are k evaders participating in the game, the set int co (x,“, . . . , xi+J will contain the 
initial positions of exactly 1 evaders. Moreover, for any pairwise distinct indices i,, . . . , 
ik+l E Nk+, j E { jl, . . . , jl} exists such that 
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$ E int co 
{ 

x~,...,x~+, 1 

But already when I= 2 it follows from Remark 2 that pairwise distinct indices 4, . . , , ik+l E Nk+2 
exist such that yig G! intco($., . . . , xi,), I= 1, 2. We have arrived at a contradiction. 

Consequently, for any mltial state z” pairwise distinct indices il, . . . , ik+l E N,, exist for 
which condition (4.5) holds. The theorem is proved. 

An upper bound has been established for the minimum number of evaders in a game with IZ 
pursuers such that the global evasion problem is solvable in the case of simple motion [2]. In 
the case of game (2.1) imposing fairly weak conditions on the domains of the values of the 
players’ controls, one can show that the same bound holds. Let [a] denote the integer part of a 
number a. 

Theorem 5. Suppose that in game (2.1) V is a strictly convex compact set with smooth 
boundary. If n 2 2, m 3 (p + 1)2P’ + 2, where p = [log,(n - l)], then the global evasion problem 
is solvable. 
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